题目内容

【题目】如图已知BE平分∠ABDDE平分∠BDC且∠EBDEDB90°.

(1)试说明:ABCD

(2)HBE的延长线与直线CD的交点BI平分∠HBD写出∠EBI与∠BHD的数量关系并说明理由

【答案】(1)详见解析;(2)∠EBIBHD,理由详见解析.

【解析】试题分析:(1)根据角平分线的定义可得∠ABD=2∠EBD,∠BDC=2∠BDE,然后求出∠ABD+∠BDC=180°,再根据同旁内角互补,两直线平行证明;
(2)ABCD,得到ABHBHD,再由BI平分EBDBH平分ABD即可得出结论

试题解析:

(1)证明:∵BE平分∠ABD,DE平分∠BDC,
∴∠ABD=2∠EBD,∠BDC=2∠BDE,
∵∠EBD+∠EDB=90°,
∴∠ABD+∠BDC=2×90°=180°,
∴AB∥CD;
(2)∠EBIBHD. 理由如下

因为ABCD

所以∠ABHBHD.

因为BI平分∠EBDBH平分∠ABD

所以∠EBIEBDABHBHD.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网