题目内容
【题目】在Rt△ABC中,∠ACB=90°,以点A为圆心,AC为半径,作⊙A交AB于点D,交CA的延长线于点E,过点E作AB的平行线EF交⊙A于点F,连接AF、BF、DF
(1)求证:BF是⊙A的切线.
(2)当∠CAB等于多少度时,四边形ADFE为菱形?请给予证明.
【答案】(1)证明见解析;(2)当∠CAB=60°时,四边形ADFE为菱形;证明见解析;
【解析】
分析(1)首先利用平行线的性质得到∠FAB=∠CAB,然后利用SAS证得两三角形全等,得出对应角相等即可;
(2)当∠CAB=60°时,四边形ADFE为菱形,根据∠CAB=60°,得到∠FAB=∠CAB=∠CAB=60°,从而得到EF=AD=AE,利用邻边相等的平行四边形是菱形进行判断四边形ADFE是菱形.
(1)证明:∵EF∥AB
∴∠FAB=∠EFA,∠CAB=∠E
∵AE=AF
∴∠EFA =∠E
∴∠FAB=∠CAB
∵AC=AF,AB=AB
∴△ABC≌△ABF
∴∠AFB=∠ACB=90°, ∴BF是⊙A的切线.
(2)当∠CAB=60°时,四边形ADFE为菱形.
理由:∵EF∥AB
∴∠E=∠CAB=60°
∵AE=AF
∴△AEF是等边三角形
∴AE=EF,
∵AE=AD
∴EF=AD
∴四边形ADFE是平行四边形
∵AE=EF
∴平行四边形ADFE为菱形.
练习册系列答案
相关题目
【题目】一个水果市场某品种苹果的销售方式如下表:
购买苹数量(千克) | 不超过千克部分 | 超过千克的部分 |
每千克的价格(元) | 元 | 元 |
(1)如果小明购买千克的苹果,那么他需要付___________元.
(2)小明分两次共购买千克的苹果,第二次购买的数量多于第一次购买的数量,若他两次共付元,求他两次分别购买苹果的数量.