题目内容

【题目】如图,DE是△ABC的中位线,延长DE到F,使EF=DE,连接BF
(1)求证:BF=DC;
(2)求证:四边形ABFD是平行四边形.

【答案】
(1)证明:连接DB,CF,

∵DE是△ABC的中位线,

∴CE=BE,

∵EF=ED,

∴四边形CDBF是平行四边形,

∴CD=BF


(2)证明:∵四边形CDBF是平行四边形,

∴CD∥FB,

∴AD∥BF,

∵DE是△ABC的中位线,

∴DE∥AB,

∴DF∥AB,

∴四边形ABFD是平行四边形


【解析】(1)连接DB,CF,利用对角线互相平分的四边形是平行四边形可得四边形CDBF是平行四边形,进而可得CD=BF;(2)由(1)可得CD∥FB,再利用三角形中位线定理可得DF∥AB,根据两组对边分别平行的四边形是平行四边形可得结论.
【考点精析】利用三角形中位线定理和平行四边形的判定对题目进行判断即可得到答案,需要熟知连接三角形两边中点的线段叫做三角形的中位线;三角形中位线定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半;两组对边分别平行的四边形是平行四边形:两组对边分别相等的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网