题目内容
【题目】如图,四边形ABCD是正方形,E,F分别是DC和CB的延长线上的点,且DE=BF,连接AE,AF,EF.
(1)求证:△ADE≌△ABF;
(2)△ABF可以由△ADE绕旋转中心________点,按顺时针旋转________度得到;
(3)若BC=8,DE=6,求△AEF的面积.
【答案】(1)见解析 (2)A 90 (3)50
【解析】试题分析: (1)根据正方形的性质得AD=AB,∠D=∠ABC=90°,然后利用“SAS”易证得△ADE≌△ABF;
(2)由于△ADE≌△ABF得∠BAF=∠DAE,则∠BAF+∠BAE=90°,即∠FAE=90°,根据旋转的定义可得到△ABF可以由△ADE绕旋转中心 A点,按顺时针方向旋转90度得到;
(3)先利用勾股定理可计算出AE=10,再根据△ABF可以由△ADE绕旋转中心 A点,按顺时针方向旋转90度得到AE=AF,∠EAF=90°,然后根据直角三角形的面积公式计算即可.
试题解析:
(1)证明:∵四边形ABCD为正方形,
∴AB=AD,∠ABF=∠ADE=90°.
∵DE=BF,
∴△ADE≌△ABF;
(2) ∵△ADE≌△ABF,
∴∠BAF=∠DAE,
而∠DAE+∠EAB=90°,
∴∠BAF+∠EAB=90°,即∠FAE=90°,
∴△ABF可以由△ADE绕旋转中心A点,按顺时针方向旋转90度得到;
故答案为A.90;
(3)在Rt△ADE中,
∵AD=BC=8,DE=6,
∴AE=10.
由题意可知AF=AE=10,∠EAF=90°,
∴S△AEF=AE·AF=50.
练习册系列答案
相关题目