题目内容
【题目】分解因式:x2-16y2=_______.
【答案】(x+4y) (x-4y)
【解析】试题解析:x2-16y2=x2-(4y)2=(x+4y) (x-4y).
【题目】有一个两位数,其十位数字为a,个位数字为b,将该两位数的两个数字颠倒,得到一个新的两位数,那么这个新两位数十位上的数字与个位上的数字的和与这个新两位数的积用代数式表示为__
【题目】【问题背景】
在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E、F分别是BC、CD上的点,且∠EAF=60°,试探究图1中线段BE、EF、FD之间的数量关系.
【初步探索】
小亮同学认为:延长FD到点G,使DG=BE,连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,则可得到 BE、EF、FD之间的数量关系是 .
【探索延伸】
在四边形ABCD中如图2,AB=AD,∠B+∠D=180°,E、F分别是BC、CD上的点,∠EAF=∠BAD,上述结论是否任然成立?说明理由.
【结论运用】
如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角(∠EOF)为70°,试求此时两舰艇之间的距离.
【题目】我校九年级(1)班所有学生参加2015年初中毕业生升学体育测试,根据测试评分标准,将他们的成绩进行统计后分为A、B、C、D四等,并绘制成如图所示的条形统计图和扇形统计图(未完成),请结合图中所给信息解答下列问题:
(1)九年级(1)班参加体育测试的学生有 人;
(2)将条形统计图补充完整;
(3)在扇形统计图中,等级B部分所占的百分比是 ,等级C对应的圆心角的度数为 ;
(4)若该校九年级学生共有550人参加体育测试,估计达到A级和B级的学生共有 人.
【题目】2015年某省遭遇历史罕见的夏秋东连旱,全省因灾造成直接经济损失68.77亿元,用科学计数法表示为( )
A、68.77×109 B、6.877×109 C、6.877×1010 D、6877×1010
【题目】如图:∠C=90°,∠DBC=30°,AB=BD,利用此图可求得tan75°的值是( )
A.2﹣ B.2+ C.﹣2 D.+1
【题目】在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示,现将△ABC平移,使点A变换为点A′,点B′、C′分别是B、C的对应点.
(1)请画出平移后的△A′B′C′,并求△A′B′C′的面积;
(2)若连接AA′,CC′,则这两条线段之间的关系是 .
【题目】在一次科技活动中,小明进行了模拟雷达扫描实验,表盘是△ABC,其中AB=AC=20,∠BAC=120°,在点A处有一束红外光线AP,从AB开始,绕点A逆时针匀速旋转,每秒旋转15°,到达AC后立即以相同旋转速度返回AB,到达后立即重复上述旋转过程,设AP与BC边的交点为M,旋转2019秒,则MC= .
【题目】随机掷两枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,则这两枚骰子向上的一面点数都是奇数的概率是 .