题目内容
【题目】A、B两组卡片共5张,A中三张分别写有数字2,4,6,B中两张分别写有3,5.它们除了数字外没有任何区别.
(1)随机地从A中抽取一张,求抽到数字为2的概率;
(2)随机地分别从A、B中各抽取一张,请你用画树状图或列表的方法表示所有等可能的结果,现制定这样一个游戏规则:若选出的两数之积为3的倍数,则甲获胜;否则乙获胜.请问这样的游戏规则对甲乙双方公平吗?为什么?
(3)如果不公平请你修改游戏规则使游戏规则对甲乙双方公平.
【答案】
(1)解:P(抽到数字为2)=1/3
(2)解:不公平,理由如下.画树状图如下:
(3)解:从树状图中可知共有6个等可能的结果,而所选出的两数之积为3的倍数的机会有4个.
∴P(甲获胜) ,而P(乙获胜) ,
∵P(甲获胜)>P(乙获胜)
∴这样的游戏规则对甲乙双方不公平
【解析】(1)根据概率的定义列式即可;(2)画出树状图,然后根据概率的意义分别求出甲、乙获胜的概率,从而得解;(3)根据游戏的公平性进行解答即可.
【考点精析】根据题目的已知条件,利用列表法与树状图法和概率公式的相关知识可以得到问题的答案,需要掌握当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率;一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m中结果,那么事件A发生的概率为P(A)=m/n.
练习册系列答案
相关题目