题目内容
【题目】如图,一次函数y=k1x+b(k1≠0)与反比例函数y=(k2≠0)(x>0)的图象交于A(1,6),B(a,3)两点,
(1)分别求出一次函数与反比例函数的解析式;
(2)直接写出k1x+b﹣>0时x(x>0)的取值范围;
(3)如图,等腰梯形OBCD中,BC∥OD,OB=CD,OD边在x轴上,过点C作CE⊥OD于点E,CE和反比例函数图象交于点P,当梯形OBCD的面积为12时,请判断PC和PE的大小关系,并说明理由.
【答案】(1) 一次函数解析式为:y=﹣3x+9;反比例函数解析式为:y=;(2)1<x<2;(3)PC=PE,理由见解析.
【解析】
试题分析:(1)由反比例函数y=(k2≠0)(x>0)的图象过A(1,6),B(a,3)两点,利用待定系数法即可求得反比例函数的解析式与点B的坐标,然后由y=k1x+b过A(1,6),B(2,3),利用待定系数法求得一次函数的解析式;
(2)结合图象,即可求得k1x+b﹣>0时x(x>0)的取值范围;
(3)首先过点B作BF⊥OD于点F,易证得Rt△OBF≌Rt△DCE(HL),即可得OF=DE,然后设C(a,3),由梯形OBCD的面积为12,即可求得a的值,继而求得线段PC与PE的长,则可证得结论.
试题解析:(1)∵y=过A(1,6),B(a,3),
∴6=,3=,
∴k2=6,a=2,
∴反比例函数解析式为:y=,B(2,3),
∵y=k1x+b过A(1,6),B(2,3),
∴,
解得:.
∴一次函数解析式为:y=﹣3x+9;
(2)由图象得:k1x+b﹣>0时,x(x>0)的取值范围为:1<x<2;
(3)PC=PE,理由如下:
过点B作BF⊥OD于点F,
∵四边形OBCD是等腰梯形,BC∥OD,CE⊥OD,
∴OB=CD,BF=CE,
在Rt△OBF和Rt△DCE中,
,
∴Rt△OBF≌Rt△DCE(HL),
∴OF=DE,
∵B(2,3),
∴OF=DE=2,BF=3,
设C(a,3),
∴BC=a﹣2,OD=a+2,
∵梯形OBCD的面积为12,
∴(a﹣2+a+2)×3=12,
解得:a=4,
∴C(4,3),
∴xP=4,
∴yP=,
∴P(4,),
∵C(4,3),E(4,0),
∴PC=3﹣=,
PE=﹣0=,
∴PC=PE.