题目内容
【题目】(1)方法回顾
在学习三角形中位线时,为了探索三角形中位线的性质,思路如下:
第一步添加辅助线:如图1,在△ABC中,延长DE (D、E分别是AB、AC的中点)到点F,使得EF=DE,连接CF;
第二步证明△ADE≌△CFE,再证四边形DBCF是平行四边形,从而得到DE∥BC,DE=BC.
(2)问题解决
如图2,在正方形ABCD中,E为AD的中点,G、F分别为AB、CD边上的点,若AG=2,DF=3,∠GEF=90°,求GF的长.
(3)拓展研究
如图3,在四边形ABCD中,∠A=100°,∠D=110°,E为AD的中点,G、F分别为AB、CD边上的点,若AG=4,DF=,∠GEF=90°,求GF的长.
【答案】问题解决:GF=5;拓展研究:GF=.
【解析】
(1)延长GE、FD交于点H,可证得△AEG≌△DEH,结合条件可证明EF垂直平分GH,可得GF=FH,可求得GF的长;
(2)过点D作AB的平行线交GE的延长线于点H,过H作CD的垂线,垂足为P,连接HF,可证明△AEG≌△DEH,结合条件可得到△HPD为等腰直角三角形,可求得PF的长,在Rt△HFP中,可求得HF,则可求得GF的长.
(1)如图2,延长GE、FD交于点H,
∵E为AD中点,
∴EA=ED,且∠A=∠EDH=90°,
在△AEG和△DEH中,
∴△AEG≌△DEH(ASA),
∴AG=HD=2,EG=EH,
∵∠GEF=90°,
∴EF垂直平分GH,
∴GF=HF=DH+DF=2+3=5;
(2)如图3,过点D作AB的平行线交GE的延长线于点H,过H作CD的垂线,垂足为P,连接HF,
同(1)可知△AEG≌△DEH,GF=HF,
∴∠A=∠HDE=100°,AG=HD=4,
∵∠ADC=110°,
∴∠HDF=360°﹣100°﹣110°=150°,
∴∠HDP=30°,∴HP=2,
PD=PH=,
∴PF=PD+DF=
在Rt△HFP中,∠HPF=90°,HP=2,PF=,
∴HF==,
∴GF=.