题目内容
【题目】如图所示,MP和NQ分别垂直平分AB和AC.
(1)若△APQ的周长为12,求BC的长;
(2)∠BAC=105°,求∠PAQ的度数.
【答案】(1)12; (2)30°
【解析】试题分析:
(1)根据线段的垂直平分线的性质证PA=PB,QA=AC.
(2)结合等腰三角形的性质和三角形的内角和定理求解.
试题解析:
(1)∵MP和NQ分别垂直平分AB和AC,∴AP=BP,AQ=CQ.
∴△APQ的周长为AP+PQ+AQ=BP+PQ+CQ=BC.
∵△APQ的周长为12,
∴BC=12.
(2)∵AP=BP,AQ=CQ,
∴∠B=∠BAP,∠C=∠CAQ.
∵∠BAC=105°,
∴∠BAP+∠CAQ=∠B+∠C=180°-∠BAC=180°-105°=75°.
∴∠PAQ=∠BAC-(∠BAP+∠CAQ)=105°-75°=30°.
练习册系列答案
相关题目