题目内容
【题目】让我们一起来探究“边数大于或等于3的多边形的内角和问题”.
规定:连接多边形不相邻的两个顶点的线段叫做多边形的对角线.
尝试:从多边形某一个顶点出发的对角线可以把一个多边形分成若干个三角形,…….这样,就把“多边形内角和问题”转化为“三角形内角和问题”了.……
(1)请你在下面表格中,试一试,做一做,并将表格补充完整:
名称 | 图形 | 内角和 |
三角形 | 180° | |
四边形 | 2180°=360° | |
五边形 | ||
六边形 | ||
... | ... | …… |
(2)根据上面的表格,请你猜一猜,七边形的内角和等于 ;…….如果一个多边形有n条边,请你用含有n的代数式表示这个多边形的内角和 .
(3)如果一个多边形的内角和是1260°,请判断这个多边形是几边形.
【答案】(1)3180°=540°,4180°=720°;(2)900°,(n-2)180°;(3)这个多边形为九边形
【解析】
(1)把多边形转化为三角形解决问题即可;(2)根据表格中内角和与边数的关系得出用含有n的代数式表示的三角形内角和,再利用规律解决问题即可;(3)利用(2)中结论,构建方程解决问题即可.
(1)表格如图所示:
图形 | 内角和 | |
五边形 | 3180°=540° | |
六边形 | 4180°=720° |
(2)七边形的内角和等于=5×180°900°;
n条边的内角和=(n-2)×180°.
故答案为900°,(n-2)180°.
(3)根据题意得(n-2)×180=1260,
解得:n=9.
答:这个多边形为九边形.
练习册系列答案
相关题目
【题目】抛物线上部分点坐标如表所示,下列说法错误的是( )
x | … | -3 | -2 | -1 | 0 | 1 | … |
y | … | -6 | 0 | 4 | 6 | 6 | … |
A. 抛物线与y轴的交点为(0,6) B. 抛物线的对称轴是在y轴的右侧;
C. 抛物线一定经过点(3,0) D. 在对称轴左侧,y随x增大而减小.