题目内容
如图,梯形ABCD中,AB∥DC,AD=DC=CB,AD、BC的延长线相交于G,CE⊥AG于E,CF⊥AB于F,则图中共有全等三角形( )
A.1对 | B.2对 | C.3对 | D.4对 |
∵AB∥DC,AD=DC=CB,
∴梯形ABCD是等腰梯形,
∴∠B=∠DAB=∠EDC,
在Rt△EDC和Rt△FBC中,
∵
,
∴△ECD≌△FBC(ASA)
∵AD=DC,
∴∠DAC=∠DCA,
又∵∠DCA=∠CAB,
∴∠DAC=∠CAB,
∴AC是∠GAB的角平分线,
∴CE=CF,
在Rt△ACE和Rt△ACF中,
∵
∴△ACE≌△ACF(HL).
综上可得有两对全等三角形.
故选:B.
∴梯形ABCD是等腰梯形,
∴∠B=∠DAB=∠EDC,
在Rt△EDC和Rt△FBC中,
∵
|
∴△ECD≌△FBC(ASA)
∵AD=DC,
∴∠DAC=∠DCA,
又∵∠DCA=∠CAB,
∴∠DAC=∠CAB,
∴AC是∠GAB的角平分线,
∴CE=CF,
在Rt△ACE和Rt△ACF中,
∵
|
∴△ACE≌△ACF(HL).
综上可得有两对全等三角形.
故选:B.
练习册系列答案
相关题目