题目内容
【题目】图1是无障碍通道,图2是其截面示意图,已知坡角∠BAC=30°,斜坡AB=4m,∠ACB=90°.现要对坡面进行改造,使改造后的坡角∠BDC=26.5°,需要把水平宽度AC增加多少m(结果精确到0.1)?(参考数据:≈1.73,sin26.5°≈0.45,cos26.5°≈0.90,tan26.5°≈0.50)
【答案】需要把水平宽度约增加0.5米
【解析】
根据正弦的定义求出BC,根据余弦的定义求出AC,利用正切的定义求出DC,结合图形计算,进而得到答案.
解:在Rt△ABC中,∠BAC=30°,AB=4,
∴BC=ABsin30°=2,AC=ABcos30°=2,
在Rt△DBC中,∠BDC=26.5°,tan∠BDC=,
∴DC==,
∴DA=-2≈4-3.46≈0.5(m),
答:需要把水平宽度约增加0.5米.
练习册系列答案
相关题目
【题目】某体育老师随机抽取了九年级甲、乙两班部分学生进行一分钟跳绳的测试,并对成绩进行统计分析,绘制了频数分布表和统计图,请你根据图表中的信息完成下列问题:
分组 | 频数 | 频率 |
第一组(0≤x<120) | 3 | 0.15 |
第二组(120≤x<160) | 8 | a |
第三组(160≤x<200) | 7 | 0.35 |
第四组(200≤x<240) | b | 0.1 |
(1)频数分布表中a=____,b=_____,并将统计图补充完整;
(2)如果该校九年级共有学生360人,估计跳绳能够一分钟完成160或160次以上的学生有多少人?
(3)已知第一组中有两个甲班学生,第四组中只有一个甲班学生,老师随机从这两个组中各选一名学生谈测试体会,则所选两人正好都是甲班学生的概率是多少?