题目内容
【题目】如图,在△ABC和△BCD中,∠BAC=∠BCD=90°,AB=AC,CB=CD.延长CA至点E,使AE=AC;延长CB至点F,使BF=BC.连接AD,AF,DF,EF.延长DB交EF于点N.
(1)求证:AD=AF;
(2)试判断四边形ABNE的形状,并说明理由.
【答案】(1)证明见解析;(2)四边形ABNE是正方形,理由见解析
【解析】解:(1)证明:∵AB=AC,∠BAC=90°,
∴∠ABC=∠ACB=45°,
∴∠ABF=135°,
∵∠BCD=90°,
∴∠ABF=∠ACD,
∵CB=CD,CB=BF,∴BF=CD,
在△ABF和△ACD中,
∴△ABF≌△ACD(SAS),
∴AD=AF;
(2)答:四边形ABNE是正方形;理由如下:
证明:由(1)知,AF=AD,△ABF≌△ACD,
∴∠FAB=∠DAC,
∵∠BAC=90°,
∴∠EAB=∠BAC=90°,
∴∠EAF=∠BAD,
在△AEF和△ABD中,
∴△AEF≌△ABD(SAS),
∴BD=EF;
∵CD=CB,∠BCD=90°,
∴∠CBD=45°,
∵∠EAB=90°,△AEF≌△ABD,
∴∠AEF=∠ABD=90°,
∴四边形ABNE是矩形,
又∵AE=AB,
∴四边形ABNE是正方形.
练习册系列答案
相关题目
【题目】甲、乙两人参加某网站的招聘测试,测试由网页制作和语言两个项目组成,他们各自的成绩(百分制)如下表所示:
应聘者 | 网页制作 | 语言 |
甲 | 80 | 70 |
乙 | 70 | 80 |
该网站根据成绩在两人之间录用了甲,则本次招聘测试中权重较大的是_____项目.