题目内容
【题目】如图,在Rt△ABC中,AC=BC,∠ACB=90°,点D、E分别在AC、BC上,BD与AE交于点O,且CD=CE,若点F是BD的中点,连接CF,交AE于点G.
(1)求证:CF⊥AE;
(2)如图2,过点F作FM⊥BC,交AE的延长线于点M,垂足为M,连接CF,若CG=GM.
①求证:CF=CM;
②求的值.
【答案】(1)详见解析;(2)①详见解析;②
【解析】
证明≌,结合直角三角形斜边中线的性质解决问题即可.
证明四边形CDFM是平行四边形,即可解决问题.
连接EF,设,证明,把问题转化为:,求出OG,用a表示,即可解决问题.
(1)证明:如图1中,
∵AC=BC,∠ACE=∠BCD=90°,CE=CD,
∴△ACE≌△BCD(SAS),
∴∠CAE=∠CBD,
∵DF=FB,
∴CF=FD=FB,
∴∠FCB=∠FBC,
∴∠FCB=∠CAB,
∵∠CAB+∠AEC=90°,
∴∠AEC+∠FCB=90°,
∴∠CGE=90°,
∴CF⊥AE.
(2)①证明:如图2中,
∵FM⊥BC,
∴∠FHC=∠CGE=∠MGF=90°,
∴∠ECG+∠CEG=90°,∠ECG+∠CFH=90°,
∴∠CEG=∠CFH,
∴CG=GM,
∴△CGE≌△MGF(AAS),
∴CE=FM,EG=GF,
∵CD=CE,
∴CD=FM,
∵∠FHB=∠ACB=90°,
∴CD∥FM,
∴四边形CDFM是平行四边形,
∴CM=DF,
∵CF=DF=FB,
∴CM=CF.
②连接EF,BM.设FG=EG=a,
∵CM=BF,CM∥BF,
∴FG∥BM,
∴=,
∵△CAE≌△CBD,
∴∠CAE=∠CBD,∵∠CAB=∠CBA,
∴∠OAB=∠OBA,
∴OA=OB,
∴=,
易知OG=GF=EG=a,EF=EM=a,
∴OM=2a+a,
∴==.
练习册系列答案
相关题目