题目内容

如图,已知反比例函数y1=
k
x
和一次函数y2=ax+1的图象相交于第一象限内的点A,且点A的横坐标为1.过点A作AB⊥x轴于点B,△AOB的面积为1.
(1)求反比例函数和一次函数的解析式.
(2)若一次函数的图象与x轴相交于点C,求线段AC的长度.
(3)直接写出:当y1>y2>0时,x的取值范围.
(4)在y轴上是否存在一点P,使△PAO为等腰三角形?若存在,请直接写出p点坐标;若不存在,请说明理由.(要求至少写两个)
(1)∵S△AOB=1,
1
2
|k|=1,
y1=
k
x
经过第一象限,
∴k=2,
y1=
2
x

当x=1时代入y=
2
x
得:y=2,
∴点A坐标为:(1,2),
∵A(1,2)在y2=ax+1图象上,
∴2=a+1,
解得:a=1,
∴y2=x+1.

(2)当y2=0时代入y2=x+1得:x=-1,
∴C(-1,0),
在Rt△ABC中,∵∠ABC=90°,AB=2,BC=2,
∴AC=
AB2+BC2
=
22+22
=2
2


(3)由图可知:当0<x<1时,y1>y2>0;

(4)①若OP=OA,可得点P的坐标为(0,
5
)或(0,-
5
);
②若AP=AO,可得点P的坐标为(0,4).
综上可得:点P的坐标为(0,
5
)或(0,-
5
)或(0,4).
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网