题目内容
如图,直角梯形ABCD中,AD∥BC,AB⊥BC,AD=4,BC=6.将腰CD以D为旋转中心逆时针旋转90°至DE,连接AE,则△ADE的面积是______.
作EF⊥AD交AD延长线于F,作DG⊥BC.如下图所示:
∵CD以D为中心逆时针旋转90°至ED,
∵AD=4,BC=6,
∴DE=DC,DE⊥DC,∠CDG=∠EDF,
∴△CDG≌△EDF,
∴EF=CG.
又∵DG⊥BC,所以AD=BG,
∴EF=CG=BC-AD=6-4=2,
∴△ADE的面积是:
AD•EF=
×4×2=4.
故答案为:4.
∵CD以D为中心逆时针旋转90°至ED,
∵AD=4,BC=6,
∴DE=DC,DE⊥DC,∠CDG=∠EDF,
∴△CDG≌△EDF,
∴EF=CG.
又∵DG⊥BC,所以AD=BG,
∴EF=CG=BC-AD=6-4=2,
∴△ADE的面积是:
1 |
2 |
1 |
2 |
故答案为:4.
练习册系列答案
相关题目