题目内容

【题目】下列命题:如图,正方形ABCD中,E、F分别为AB、AD上的点,AF=BE,CE、BF交于H,BF交AC于M,O为AC的中点,OB交CE于N,连OH.下列结论中:①BF⊥CE;②OM=ON;③ ;④ .其中正确的命题有(
A.只有①②
B.只有①②④
C.只有①④
D.①②③④

【答案】B
【解析】解:∵AF=BE,AB=BC,∠ABC=∠BAD=90°, ∴△ABF≌△BEC,
∴∠BCE=∠ABF,∠BFA=∠BEC,
∴△BEH∽△ABF,
∴∠BAF=∠BHE=90°,
即BF⊥EC,①正确;
∵四边形是正方形,
∴BO⊥AC,BO=OC,
由题意正方形中角ABO=角BCO,在上面所证∠BCE=∠ABF,
∴∠ECO=∠FBO,
∴△OBM≌△ONC,
∴ON=OM,
即②正确;
③∵△OBM≌△ONC,
∴BM=CN,
∵∠BOM=90°,
∴当H为BM中点时,OH= BM= CN(直角三角形斜边中线等于斜边的一半),
因此只有当H为BM的中点时, ,故③错误;
④过O点作OG垂直于OH,OG交CH与G点,
在△OGC与△OHB中,

故△OGC≌△OHB,
∵OH⊥OG,
∴△OHG是等腰直角三角形,
按照前述作辅助线之后,OHG是等腰直角三角形,OH乘以根2之后等于HG,
则在证明证明三角形OGC与三角形OHB全等之后,CG=BH,
所以④式成立.
综上所述,①②④正确.
故选B.

【考点精析】掌握直角三角形斜边上的中线和正方形的性质是解答本题的根本,需要知道直角三角形斜边上的中线等于斜边的一半;正方形四个角都是直角,四条边都相等;正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角;正方形的一条对角线把正方形分成两个全等的等腰直角三角形;正方形的对角线与边的夹角是45o;正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网