题目内容
【题目】如图,大海中有A和B两个岛屿,为测量它们之间的距离,在海岸线PQ上点E处测得∠AEP=60°,∠BEQ=45°;在点F处测得∠AFP=45°,∠BFQ=90°,EF=2km.
(1)判断AB、AE的数量关系,并说明理由;
(2)求两个岛屿A和B之间的距离(结果保留根号).
【答案】(1)AB=AE,理由见解析;(2)()km.
【解析】
试题(1)根据SAS即可证明△AEF≌△ABF,得到AB=AE;
(2)作AH⊥PQ,垂足为H.设AE=x,在直角△AHF,直角△AEP中,利用三角函数表示出HE与HF,从而可得到关于x的方程,解方程即可得解.
试题解析:(1)相等.
∵∠BEQ=30°,∠BFQ=60°,
∴∠EBF=∠BEQ=30°,
∴EF=BF,
又∵∠AFP=60°,
∴∠BFA=60°.
在△AEF与△ABF中,
∵,
∴△AEF≌△ABF(SAS),
∴AB=AE;
(2)过点A作AH⊥PQ,垂足为H.
设AE=xkm,
则AH=xsin60°km,HE=xcos60°km,
∴HF=HE+EF=(xcos60°+2)km,
Rt△AHF中,AH=HFtan45°,
∴AH=HF,
即:xsin60°= xcos60°+2
解得:x=,
即AB=AE=()km.
答:两个岛屿A与B之间的距离为()km.
考点: 解直角三角形的应用-方向角问题.
【题目】为了节约资源,科学指导居民改善居住条件,小王向房管部门提出了一个购买商品房的政策性方案.
人均住房面积(平方米) | 单价(万元/平方米) |
不超过30(平方米) | 0.3 |
超过30平方米不超过m(平方米)部分(45≤m≤60) | 0.5 |
超过m平方米部分 | 0.7 |
根据这个购房方案:
(1)若某三口之家欲购买120平方米的商品房,求其应缴纳的房款;
(2)设该家庭购买商品房的人均面积为x平方米,缴纳房款y万元,请求出y关于x的函数关系式;
(3)若该家庭购买商品房的人均面积为50平方米,缴纳房款为y万元,且57<y≤60 时,求m的取值范围.