题目内容
【题目】圆是中心对称图形,它的对称中心是( )
A. 圆周 B. 圆心 C. 半径 D. 直径
【答案】B
【解析】圆的是既是中心对称图形又是轴对称图形,对称中心是圆心.故选B.
【题目】已知x=1是方程x2+mx+3=0的一个实数根,则m的值是 .
【题目】有五张正面分别标有数字﹣2,﹣1,0,1,2的卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中随机抽取一张,记卡片上的数字为a,则使关于x的一元二次方程x2﹣2(a﹣1)x+a(a﹣3)=0有两个不相等的实数根,且以x为自变量的二次函数y=x2﹣(a2+1)x﹣a+2的图象不经过点(1,0)的概率是__.
【题目】若关于x的一元二次方程(m﹣2)x2+5x+m2﹣2m=0的常数项为0,则m= .
【题目】如图四边形ABCD是实验中学的一块空地的平面图,其中∠B=90°,AB=3m,BC=4m,CD=12m,AD=13m现计划在空地上植上草地绿化环境,若每平方米的草皮需150元;问需投入资金多少元?
【题目】如图,在平面直角坐标系中,已知一次函数y=﹣2x+6的图象与x轴交于点A,与y轴交于点B.试求出△OAB的面积.
【题目】某高校共有5个大餐厅和2个小餐厅.经过测试:同时开放1个大餐厅、2个小餐厅,可供1680名学生就餐;同时开放2个大餐厅、1个小餐厅,可供2280名学生就餐.(1)求1个大餐厅、1个小餐厅分别可供多少名学生就餐;(2)若7个餐厅同时开放,能否供全校的5300名学生就餐?请说明理由.
【题目】(12分)如图,以△ABC的BC边上一点O为圆心的圆,经过A、B两点,且与BC边交于点E,D为BE的下半圆弧的中点,连接AD交BC于F,AC=FC.
(1)求证:AC是⊙O的切线;
(2)已知圆的半径R=5,EF=3,求DF的长.
【题目】已知△和△都是等腰直角三角形, , , , 是的中点.若将△绕点旋转一周,则线段长度的取值范围是( )
A. B.
C. D.