题目内容

【题目】如图,点MAB的中点,点PMB上.分别以AP,PB为边,作正方形APCD和正方形PBEF,连结MDME.设AP=a,BP=b,且a+b=10,ab=20.则图中阴影部分的面积为________

【答案】35

【解析】

根据题意知,阴影部分的面积等于两个正方形的面积减去两个三角形的面积,由给出的条件即可求出阴影部分的面积

AP=a,BP=b

∴正方形APCD的面积S1= a2 正方形PBEF的面积S2=b2

∵点MAB的中点

AM=MB=AB=(a+b)

SADM=AM×DA=×(a+b) ×a=(a2+ab)

SMBE=MB×BE=×(a+b) ×b=(b2+ab)

S阴影= S1+ S2- SADM- SMBE

= a2+ b2-(a2+ab)-(b2+ab)

= a2+ b2- ab

=(a+b)2-2ab

=×102-2×20

=75-40

=35.

故答案为:35.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网