题目内容

【题目】如图,已知∠ABC=90°,D是直线AB上的点,AD=BC.

(1)如图1,过点A作AF⊥AB,并截取AF=BD,连接DC、DF、CF,判断△CDF的形状并证明;
(2)如图2,E是直线BC上一点,且CE=BD,直线AE、CD相交于点P,∠APD的度数是一个固定的值吗?若是,请求出它的度数;若不是,请说明理由.

【答案】
(1)解:△CDF是等腰直角三角形,理由如下:

∵AF⊥AD,∠ABC=90°,

∴∠FAD=∠DBC,

在△FAD与△DBC中,

∴△FAD≌△DBC(SAS),

∴FD=DC,

∴△CDF是等腰三角形,

∵△FAD≌△DBC,

∴∠FDA=∠DCB,

∵∠BDC+∠DCB=90°,

∴∠BDC+∠FDA=90°,

∴△CDF是等腰直角三角形;


(2)解:作AF⊥AB于A,使AF=BD,连结DF,CF,如图,

∵AF⊥AD,∠ABC=90°,

∴∠FAD=∠DBC,

在△FAD与△DBC中,

∴△FAD≌△DBC(SAS),

∴FD=DC,

∴△CDF是等腰三角形,

∵△FAD≌△DBC,

∴∠FDA=∠DCB,

∵∠BDC+∠DCB=90°,

∴∠BDC+∠FDA=90°,

∴△CDF是等腰直角三角形,

∴∠FCD=45°,

∵AF∥CE,且AF=CE,

∴四边形AFCE是平行四边形,

∴AE∥CF,

∴∠APD=∠FCD=45°.


【解析】(1)利用SAS证出△FAD≌△DBC,再利用全等三角形的性质得出FD=DC,∠FDA=∠DCB,故△CDF是等腰直角三角形;
(2)作AF⊥AB于A,使AF=BD,连结DF,CF,如图,利用SAS证明△FAD≌△DBC,再利用全等三角形的性质得出FD=DC,FDC=90°.故△CDF是等腰直角三角形,从而推出∠FCD=45°,由AF∥CE,且AF=CE,推出四边形AFCE是平行四边形,根据平行四边形的性质得出AE∥CF,根据平行线的性质得出结论。
【考点精析】解答此题的关键在于理解等腰三角形的判定的相关知识,掌握如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称:等角对等边).这个判定定理常用于证明同一个三角形中的边相等,以及对平行四边形的判定与性质的理解,了解若一直线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段以对角线的交点为中点,并且这两条直线二等分此平行四边形的面积.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网