题目内容
分析:连接CM、EM,根据直角三角形斜边上的中线等于斜边的一半可得CM=EM=
BD,再根据等腰三角形三线合一的性质证明即可.
| 1 |
| 2 |
解答:
证明:如图,连接CM、EM,
∵∠ACB=90°,DE⊥AB,M是BD的中点,
∴CM=EM=
BD,
∵N是CE的中点,
∴MN⊥CE(等腰三角形三线合一).
∵∠ACB=90°,DE⊥AB,M是BD的中点,
∴CM=EM=
| 1 |
| 2 |
∵N是CE的中点,
∴MN⊥CE(等腰三角形三线合一).
点评:本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等腰三角形三线合一的性质,熟记性质并作出辅助线是解题的关键.
练习册系列答案
相关题目