题目内容
【题目】某工厂甲、乙两个部门各有员工400人,为了解这两个部门员工的生产技能情况,进行了抽样调查,过程如下,请补充完整. 收集数据
从甲、乙两个部门各随机抽取20名员工,进行了生产技能测试,测试成绩(百分制)如下:
甲 78 86 74 81 75 76 87 70 75 90 75 79 81 70 74 80 86 69 83 77
乙 93 73 88 81 72 81 94 83 77 83 80 81 70 81 73 78 82 80 70 40
整理、描述数据
按如下分数段整理、描述这两组样本数据:
成绩x | 40≤x≤49 | 50≤x≤59 | 60≤x≤69 | 70≤x≤79 | 80≤x≤89 | 90≤x≤100 |
甲 | 0 | 0 | 1 | 11 | 7 | 1 |
乙 |
(说明:成绩80分及以上为生产技能优秀,70﹣﹣79分为生产技能良好,60﹣﹣69分为生产技能合格,60分以下为生产技能不合格)
分析数据
两组样本数据的平均数、中位数、众数如下表所示:
部门 | 平均数 | 中位数 | 众数 |
甲 | 78.3 | 77.5 | 75 |
乙 | 78 | 80.5 | 81 |
得出结论:a.估计乙部门生产技能优秀的员工人数为;b.可以推断出部门员工的生产技能水平较高,理由为 . (至少从两个不同的角度说明推断的合理性)
【答案】解:1;0;0;7;10;2;200;甲或乙;①甲部门生产技能测试中,平均分较高,表示甲部门员工的生产技能水平较高,②甲部门生产技能测试中,没有技能不合格的员工,表示甲部门员工的生产技能水平较高,或①甲部门生产技能测试中,中位数较高,表示乙部门员工的生产技能水平较高,②甲部门生产技能测试中,众数较高,表示乙部门员工的生产技能水平较高
【解析】解:填表如下:
成绩x | 40≤x≤49 | 50≤x≤59 | 60≤x≤69 | 70≤x≤79 | 80≤x≤89 | 90≤x≤100 |
甲 | 0 | 0 | 1 | 11 | 7 | 1 |
乙 | 1 | 0 | 0 | 7 | 10 | 2 |
a. ×400=240(人).
故估计乙部门生产技能优秀的员工人数为 200;
b.答案不唯一,理由合理即可.
可以推断出甲部门员工的生产技能水平较高,理由为:①甲部门生产技能测试中,平均分较高,表示甲部门员工的生产技能水平较高;②甲部门生产技能测试中,没有技能不合格的员工,表示甲部门员工的生产技能水平较高.
或可以推断出乙部门员工的生产技能水平较高,理由为:①甲部门生产技能测试中,中位数较高,表示乙部门员工的生产技能水平较高;②甲部门生产技能测试中,众数较高,表示乙部门员工的生产技能水平较高.
所以答案是:1,0,0,7,10,2;
200;甲或乙,①甲部门生产技能测试中,平均分较高,表示甲部门员工的生产技能水平较高;②甲部门生产技能测试中,没有技能不合格的员工,表示甲部门员工的生产技能水平较高;或①甲部门生产技能测试中,中位数较高,表示乙部门员工的生产技能水平较高;②甲部门生产技能测试中,众数较高,表示乙部门员工的生产技能水平较高.
【考点精析】解答此题的关键在于理解中位数、众数的相关知识,掌握中位数是唯一的,仅与数据的排列位置有关,它不能充分利用所有数据;众数可能一个,也可能多个,它一定是这组数据中的数.