题目内容
【题目】如图,在正方形ABCD的外侧, 作两个等腰三角形ADE和DCF,
(1) 若EA=ED=FD=FC,请判断BE和AF的关系?并给予证明.
(2)若三角形ADE和DCF为一般三角形,且AE=DF,ED=FC,请用备用图画出图形,直接写出BE和AF的关系,不用证明.
【答案】(1)AF=BE,AF⊥BE,理由见解析(2)AF=BE,AF⊥BE,理由见解析
【解析】
(1)根据正方形的性质、等腰三角形的性质以及全等三角形的判定定理证明△BAE≌△ADF,根据全等三角形的性质进行证明;
(2)同(1)一样的方法证明即可.
(1)在正方形ABCD中,∠BAD=∠ADC=90,AB=AD=CD.
∵EA=ED=FD=FC,
在△AED和△DFC中,
,
∴△AED≌△DFC(SSS),
∴∠EAD=∠FDC.
∴∠BAD+∠EAD=∠ADC+∠FDC.
即∠BAE=∠ADF.
在△BAE和△ADF中,
,
∴△BAE≌△ADF(SAS)
∴AF=BE,
∴∠ABE=∠DAF.
∵∠DAF+∠BAF=90,
∴∠ABE+∠BAF=90,
∴∠AMB=90,
∴AF⊥BE.
故AF=BE,AF⊥BE.
(2)所画图形如图,AF=BE,AF⊥BE理由如下:
在△AED和△DFC中,
,
∴△AED≌△DFC(SSS),
∴∠EAD=∠FDC.
∴∠BAD+∠EAD=∠ADC+∠FDC.即∠BAE=∠ADF.
在△BAE和△ADF中, ,
∴△BAE≌△ADF(SAS),
∴AF=BE,
∴∠ABE=∠DAF.
∵∠DAF+∠BAF=90,
∴∠ABE+∠BAF=90,
∴∠AMB=90,
∴AF⊥BE.
故AF=BE,AF⊥BE.
【题目】某数学拓展课研究小组经过市场调查,发现某种衣服的销量与售价是一次函数关系,具体信息如下表:
售价(元/件) | 200 | 210 | 220 | 230 | … |
月销量(件) | 200 | 180 | 160 | 140 | … |
已知该运动服的进价为每件160元,售价为x元,月销量为y件.
(1)求出y关于x的函数关系式;
(2)若销售该运动服的月利润为w元,求出w关于x的函数关系式,并求出月利润最大时的售价;
(3)由于运动服进价降低了a元,商家决定回馈顾客,打折销售,结果发现,此时月利润最大时的售价比调整前月利润最大时的售价低10元,则a的值是多少?