题目内容
【题目】已知抛物线y=ax2+bx+3与y轴的交点为A,点A与点B关于抛物线的对称轴对称,二次函数y=ax2+bx+3的y与x的部分对应值如下表:
x | … | ﹣1 | 0 | 1 | 3 | 4 | … |
y | … | 8 | 0 | 0 | … |
(1)抛物线的对称轴是 _________ .点A( ______, ____),B( _____, _____);
(2)求二次函数y=ax2+bx+3的解析式;
(3)已知点M(m,n)在抛物线y=ax2+bx+3上,设△BAM的面积为S,求S与m的函数关系式、画出函数图象.并利用函数图象说明S是否存在最大值,为什么?
【答案】(1)x=2,A(0,3),B(4,3);
(2)y=x2-4x+3;
(3)S=,S不存在最大值,从图象可知:当m<0或m>4时,S的值可以无限大.
【解析】
试题(1)利用当x=1和3时,y=0,得出抛物线的对称轴是直线x=2,再利用x=0时,y=3,则点A( 0,3 ),即可得出B点坐标;
(2)根据图象过(1,0),(3,0)则设抛物线为y=a(x-1)(x-3),把(0,3)代入可得出a的值,进而得出解析式;
(3)当0<m<4时,点M到AB的距离为3-n,当m<0或m>4时,点M到直线AB的距离为n-3,利用三角形面积得出S与m的函数关系式,利用图象得出S是否存在最大值.
试题解析:(1)根据当x=1和3时,y=0,得出抛物线的对称轴是:直线x=2,
∵抛物线y=ax2+bx+3与y轴的交点为A,
∴x=0时,y=3,则点A(0,3),故B(4,3);
(2)图象过(1,0),(3,0),
设抛物线为y=a(x-1)(x-3),
把(0,3)代入可得:3=a(0-1)(0-3),
解得:a=1,
故二次函数y=ax2+bx+3的解析式为:y=(x-1)(x-3)=x2-4x+3;
(3)如图1,
∵AB∥x轴,AB=4,
当0<m<4时,点M到AB的距离为3-n,
∴S△ABM=(3-n)×4=6-2n,
又∵n=m2-4m+3,S1=-2m2+8m,
∴当m<0或m>4时,点M到直线AB的距离为n-3,S2=×4(n-3)=2n-6,
而n=m2-4m+3,S2=2m2-8m,
S=,
故函数图象如图2(x轴上方部分)所示,S不存在最大值,从图象可知:当m<0或m>4时,S的值可以无限大.