题目内容
【题目】如图,抛物线y=x2+bx+c(c>0)与y轴交于点C,顶点为A,抛物线的对称轴交x轴于点E,交BC于点D,tan∠AOE=.直线OA与抛物线的另一个交点为B.当OC=2AD时,c的值是_____.
【答案】或.
【解析】
设A(2m,3m)、B(2n,3n),分点A在线段OB上及点B在线段OA上两种情况,由OC=2AD,利用相似三角形的性质可得出m、n间的关系,将A、B点坐标代入抛物线与抛物线对称轴x=2m联立方程组,解方程组即可求得c的值.
解:由tan∠AOE=,可设A、B点坐标分别为(2m,3m)、(2n,3n),
∵AD∥OC,
∴∠ADB=∠OCB,∠DAB=∠COA,
∴△BAD∽△BOC.
①当点A在线段OB上时,如图1所示.
∵OC=2AD,
∴D点为线段BC的中点,
∵C(0,c),B(2n,3n),
∴D点横坐标为=n,
由题意知A、D点均在抛物线的对称轴上,
∴n=2m,
∴B点坐标为(4m,6m),
∵A,B在抛物线上,且抛物线对称轴为x=2m,
∴有,
解得:,或,
∵c>0,
∴c=;
②当点B在线段OA上时,如图2所示.
∵OC=2AD,
∴OB=2AB.
∵C(0,c),B(2n,3n),
∴D点横坐标为×2n=3n,
由题意知A、D点均在抛物线的对称轴上,
∴n=m,
∴B点坐标为(m,2m),
∵A,B在抛物线上,且抛物线对称轴为x=2m,
∴有,
解得:,或.
∵c>0,
∴c=.
综上所述:c的值为或.
故答案为:或.
【题目】在开展“经典阅读”活动中,某学校为了解全校学生利用课外时间阅读的情况,学校团委随机抽取若干名学生,调查他们一周的课外阅读时间,并根据调查结果绘制了如下尚不完整的统计表.根据图表信息,解答下列问题:
频率分布表
阅读时间(小时) | 频数(人) | 频率 |
6 | 0.12 | |
0.24 | ||
15 | 0.3 | |
12 | ||
5 | 0.1 | |
合计 | 1 |
(1)求__________,_________;
(2)将频数分布直方图补充完整(画图后请标注相应的频数);
(3)在范围内的5名同学中恰好有2名男生和3名女生,现从中随机挑选2名同学代表学校参加全市经典阅读比赛,请用树状图法或者列表法求出恰好选中“1男1女”的概率.