题目内容
【题目】矩形ABCD的对角线相交于点O.DE∥AC,CE∥BD.
(1)求证:四边形OCED是菱形;
(2)若∠ACB=30°,菱形OCED的而积为,求AC的长.
【答案】(1)证明见解析;(2)8.
【解析】
(1)熟记菱形的判定定理,本题可用一组邻边相等的平行四边形是菱形.
(2)因为∠ACB=30°可证明菱形的一条对角线和边长相等,可证明和对角线构成等边三角形,然后作辅助线,根据菱形的面积已知可求解.
解:(1)∵DE∥AC,CE∥BD
∴四边形OCED是平行四边形
∵四边形ABCD是矩形
∴AO=OC=BO=OD
∴四边形OCED是菱形
(2)∵∠ACB=30°,
∴∠DCO=90°-30°=60°
又∵OD=OC
∴△OCD是等边三角形
过D作DF⊥OC于F,则CF=OC,设CF=x,则OC=2x,AC=4x.
在Rt△DFC中,tan60°=,
∴DF=x.
∴OCDF=8.
∴x=2.
∴AC=4×2=8.
练习册系列答案
相关题目