题目内容
如图, 在Rt△ABC中,∠C=90º, AC=9,BC=12,动点P从点A开始沿边AC向点C以每秒1个单位长度的速度运动,动点Q从点C开始沿边CB向点B以每秒2个单位长度的速度运动,过点P作PD∥BC,交AB于点D,连接PQ. 点P、Q分别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t秒(t≥0).
(1)直接用含t的代数式分别表示:QB=__________, PD=___________;
(2)是否存在t的值,使四边形PDBQ为平行四边形?若存在,求出t的值;若不存在,说明理由;
(3)是否存在t的值,使四边形PDBQ为菱形?若存在,求出t的值;若不存在,说明理由.并探究如何改变点Q的速度(匀速运动),使四边形PDBQ在某一时刻成为菱形,求点Q的速度.
(1)直接用含t的代数式分别表示:QB=__________, PD=___________;
(2)是否存在t的值,使四边形PDBQ为平行四边形?若存在,求出t的值;若不存在,说明理由;
(3)是否存在t的值,使四边形PDBQ为菱形?若存在,求出t的值;若不存在,说明理由.并探究如何改变点Q的速度(匀速运动),使四边形PDBQ在某一时刻成为菱形,求点Q的速度.
(1)QB=12-2t,PD=t (2)t=秒,或t=3.6秒。(3)t=5秒,Q的速度为。
试题分析:解:(1)QB=12-2t, PD=.
(2)∵PD∥BC,当PD=BQ时四边形PDBQ为平行四边形,
即12-2t=,解得:(秒) (或秒)
∴存在t的值,使四边形PDBQ为平行四边形.
(3)∵t=3.6时,BQ=PD==4.8,由△ABC∽△ADP,∴AD==6, BD=15-6=9,
∴BD≠PD,∴不存在t使四边形PDBQ为菱形.
设Q以每秒a个单位长度的速度运动,则PD=, BD=15-,QB=12-at,
四边形PDBQ为菱形时,有PD=BD=BQ,先由=15-得t=5
将t=5代入12-at=,解得
点评:熟知以上判定条件性质,在解答题目时要认真审题,有三问需结合已知一一作答,注意的是,二问有两种情况,易遗漏,本题有一定的难度属于中档题。
练习册系列答案
相关题目