题目内容

已知一个矩形纸片OACB,将该纸片放置在平面直角坐标系中,点A(11,0),点B(0,6),点P为BC边上的动点(点P不与点B、C重合),经过点O、P折叠该纸片,得点B′和折痕OP.设BP=t.

(Ⅰ)如图①,当∠BOP=30°时,求点P的坐标;
(Ⅱ)如图②,经过点P再次折叠纸片,使点C落在直线PB′上,得点C′和折痕PQ,若AQ=m,试用含有t的式子表示m;
(Ⅲ)在(Ⅱ)的条件下,当点C′恰好落在边OA上时,求点P的坐标(直接写出结果即可).
(Ⅰ)(,6)  (Ⅱ)m=(0<t<11)
(Ⅲ)点P的坐标为(,6)或(,6)

试题分析:(Ⅰ)根据题意,∠OBP=90°,OB=6,
在Rt△OBP中,由∠BOP=30°,BP=t,得OP=2t.
∵OP2=OB2+BP2
即(2t)2=62+t2
解得:t1=2,t2=﹣2(舍去).
∴点P的坐标为(,6).
(Ⅱ)∵△OB′P、△QC′P分别是由△OBP、△QCP折叠得到的,
∴△OB′P≌△OBP,△QC′P≌△QCP,
∴∠OPB′=∠OPB,∠QPC′=∠QPC,
∵∠OPB′+∠OPB+∠QPC′+∠QPC=180°,
∴∠OPB+∠QPC=90°,
∵∠BOP+∠OPB=90°,
∴∠BOP=∠CPQ.
又∵∠OBP=∠C=90°,
∴△OBP∽△PCQ,

由题意设BP=t,AQ=m,BC=11,AC=6,则PC=11﹣t,CQ=6﹣m.

∴m=(0<t<11).
(Ⅲ)过点P作PE⊥OA于E,
∴∠PEA=∠QAC′=90°,
∴∠PC′E+∠EPC′=90°,
∵∠PC′E+∠QC′A=90°,
∴∠EPC′=∠QC′A,
∴△PC′E∽△C′QA,

∵PC′=PC=11﹣t,PE=OB=6,AQ=m,C′Q=CQ=6﹣m,
∴AC′==


∴3(6﹣m)2=(3﹣m)(11﹣t)2
∵m=
∴3(﹣t2+t)2=(3﹣t2+t﹣6)(11﹣t)2
t2(11﹣t)2=(﹣t2+t﹣3)(11﹣t)2
t2=﹣t2+t﹣3,
∴3t2﹣22t+36=0,
解得:t1=,t2=
点P的坐标为(,6)或(,6).

点评:此题考查了折叠的性质、矩形的性质以及相似三角形的判定与性质等知识.此题难度较大,注意掌握折叠前后图形的对应关系,注意数形结合思想与方程思想的应用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网