题目内容
【题目】如图,抛物线y=ax2+bx经过点A(4,0)、B(2,2),连接OB、AB.
(1)求抛物线的解析式;
(2)求证:△OAB是等腰直角三角形.
【答案】(1)抛物线的解析式为:y=﹣x2+2x;(2)证明见解析.
【解析】
(1)将A、B的坐标代入抛物线的解析式中,通过联立方程组即可求出抛物线的解析式;
(2)过B作BC⊥x轴于C,根据A、B的坐标易求得OC=BC=AC=2,由此可证得∠BOC、∠BAC、∠OBC、∠ABC都是45°,即可证得△OAB是等腰直角三角形.
(1)解:由题意得,
解得;
∴该抛物线的解析式为:y=﹣x2+2x;
(2)证明:过点B作BC⊥x轴于点C,则OC=BC=AC=2;
∴∠BOC=∠OBC=∠BAC=∠ABC=45°;
∴∠OBA=90°,OB=AB;
∴△OAB是等腰直角三角形;
练习册系列答案
相关题目
【题目】某射击教练为了了解队员训练情况,从队员中选取甲、乙两名队员进行射击测试,相同条件下各射靶5次,成绩统计如下:
命中环数 | 6 | 7 | 8 | 9 | 10 |
甲命中相应环数的次数 | 0 | 1 | 3 | 1 | 0 |
乙命中相应环数的次数 | 2 | 0 | 0 | 2 | 1 |
(1)试通过计算说明甲、乙两人的成绩谁比较稳定?
(3)如果乙再射击1次,命中8环,那么乙射击成绩的方差会 .(填“变大”、“变小”或“不变”)