题目内容
【题目】如图,已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=20,动点P从A点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.
(1)写出数轴上点B表示的数______;点P表示的数______(用含t的代数式表示)
(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P、Q同时出发,问多少秒时P、Q之间的距离恰好等于2?
(3)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速到家动,若点P、Q同时出发,问点P运动多少秒时追上Q?
(4)若M为AP的中点,N为BP的中点,在点P运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN的长.
【答案】(1)-12,8-5t;(2)或;(3)10;(4)MN的长度不变,值为10.
【解析】
(1)根据已知可得B点表示的数为8﹣20;点P表示的数为8﹣5t;
(2)运动时间为t秒,分点P、Q相遇前相距2,相遇后相距2两种情况列方程进行求解即可;
(3)设点P运动x秒时追上Q,根据P、Q之间相距20,列方程求解即可;
(4)分①当点P在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差求出MN的长即可.
(1)∵点A表示的数为8,B在A点左边,AB=20,
∴点B表示的数是8﹣20=﹣12,
∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒,
∴点P表示的数是8﹣5t,
故答案为:﹣12,8﹣5t;
(2)若点P、Q同时出发,设t秒时P、Q之间的距离恰好等于2;
分两种情况:
①点P、Q相遇之前,
由题意得3t+2+5t=20,解得t=;
②点P、Q相遇之后,
由题意得3t﹣2+5t=20,解得t=,
答:若点P、Q同时出发,或秒时P、Q之间的距离恰好等于2;
(3)如图,设点P运动x秒时,在点C处追上点Q,
则AC=5x,BC=3x,
∵AC﹣BC=AB,
∴5x﹣3x=20,
解得:x=10,
∴点P运动10秒时追上点Q;
(4)线段MN的长度不发生变化,都等于10;理由如下:
①当点P在点A、B两点之间运动时:
MN=MP+NP=AP+BP=(AP+BP)=AB=10,
②当点P运动到点B的左侧时:
MN=MP﹣NP=AP﹣BP=(AP﹣BP)=AB=10,
∴线段MN的长度不发生变化,其值为10.
【题目】某电器公司计划装运甲、乙、丙三种家电到农村销售(规定每辆汽车按规定满载,且每辆汽车只能装同一种家电).下表所示为装运甲、乙、丙三种家电的台数及利润.
甲 | 乙 | 丙 | |
每辆汽车能装运的台数 | 40 | 20 | 30 |
每台家电可获利润(万元) | 0.05 | 0.07 | 0.04 |
(1)若用8辆汽车装运乙、丙两种家电190台到A地销售,问装运乙、丙的汽车各多少辆.
(2)计划用20辆汽车装运甲、乙、丙三种家电720台到B地销售,如何安排装运,可使公司获得36.6万元的利润?