题目内容
如图,在梯形ABCD中,AD∥BC,∠B=90°,AD=2,BC=5,E为DC中点,tan∠C=.则AE的长度为_ __.
试题分析:先过E作BC的垂线,交BC于F,交AD延长线于M,根据AAS证明△MDE≌△FCE,得出EF=ME,DM=CF,可求得DM的长,再通过解直角三角形可求得MF的长,最后利用勾股定理求得AE的长.
过点E作BC的垂线交BC于点F,交AD的延长线于点M,
∵AD∥BC,E是DC的中点,
∴∠M=∠MFC,DE=CE;
在△MDE和△FCE中,
∴△MDE≌△FCE,
∴EF=ME,DM=CF.
∵AD=2,BC=5,
∴EF=ME=2,
点评:此类问题是初中数学的重点和难点,在中考中极为常见,一般以压轴题形式出现,难度较大.
练习册系列答案
相关题目