题目内容

【题目】如图,一次函数y=kx+b与反比例函数y= (x>0)的图象交于A(m,6),B(3,n)两点.
(1)求一次函数的解析式;
(2)求△AOB的面积.

【答案】
(1)解:把点(m,6),B(3,n)分别代入y= (x>0)得m=1,n=2,

∴A点坐标为(1,6),B点坐标为(3,2),

把A(1,6),B(3,2)分别代入y=kx+b得 ,解得

∴一次函数解析式为y=﹣2x+8


(2)解:分别过点A、B作AE⊥x轴,BC⊥x轴,垂足分别是E、C点.直线AB交x轴于D点.

令﹣2x+8=0,得x=4,即D(4,0).

∵A(1,6),B(3,2),

∴AE=6,BC=2,

∴SAOB=SAOD﹣SBOD= ×4×6﹣ ×4×2=8.


【解析】(1)先把点A(m,6),B(3,n)分别代入y= (x>0)可求出m、n的值,确定A点坐标为(1,6),B点坐标为(3,2),然后利用待定系数法求一次函数的解析式;(2)分别过点A、B作AE⊥x轴,BC⊥x轴,垂足分别是E、C点.直线AB交x轴于D点.SAOB=SAOD﹣SBOD , 由三角形的面积公式可以直接求得结果.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网