题目内容
【题目】如图,在等边三角形ABC中,P为BC上一点,D为AC上一点,且∠APD=60°,BP=1,CD=,则△ABC的边长为____.
【答案】3
【解析】
根据等边三角形性质求出AB=BC=AC,∠B=∠C=60°,推出∠BAP=∠DPC,证△BAP∽△CPD,得出,代入求出即可.
∵△ABC是等边三角形,
∴AB=BC=AC,∠B=∠C=60°,
∴∠BAP+∠APB=180°-60°=120°,
∵∠APD=60°,
∴∠APB+∠DPC=180°-60°=120°,
∴∠BAP=∠DPC,
即∠B=∠C,∠BAP=∠DPC,
∴△BAP∽△CPD,
∴,
∵CD=,CP=BC-BP=x-1,BP=1,
即,
解得:AB=3.
故答案为3.
练习册系列答案
相关题目