题目内容
【题目】如图,二次函数y=ax2+bx+c的图象与x轴的一个交点坐标是(3,0),对称轴为直线x=1,下列结论:①abc>0;②2a+b=0;③4a﹣2b+c>0;④当y>0时,﹣1<x<3;⑤b<c.其中正确的个数是( )
A.2B.3C.4D.5
【答案】B
【解析】
根据二次函数y=ax2+bx+c的图象与性质依次进行判断即可求解.
解:∵抛物线开口向下,
∴a<0;
∵抛物线的对称轴为直线x=﹣=1,
∴b=﹣2a>0,所以②正确;
∵抛物线与y轴的交点在x轴上方,
∴c>0,
∴abc<0,所以①错误;
∵抛物线与x轴的一个交点坐标是(3,0),对称轴为直线x=1,
∴抛物线与x轴的另一个交点坐标是(﹣1,0),
∴x=﹣2时,y<0,
∴4a﹣2b+c<0,所以③错误;
∵抛物线与x轴的2个交点坐标为(﹣1,0),(3,0),
∴﹣1<x<3时,y>0,所以④正确;
∵x=﹣1时,y=0,
∴a﹣b+c=0,
而b=﹣2a,
∴c=﹣3a,
∴b﹣c=﹣2a+3a=a<0,
即b<c,所以⑤正确.
故选B.
练习册系列答案
相关题目