题目内容

矩形ABCD,折叠矩形的一边AD,使点D落在BC边的点F处,已知折痕AE=cm,且tan∠EFC=
(1)求证:△AFB∽△FEC;
(2)求矩形ABCD的周长。
(1)略 (2)36cm
(1)证明:∵∠AFE=90°,∠B=90°,∠C=90°.
∴∠BAF+∠AFB=∠AFB+∠EFC=∠EFC+∠FEC=90°.
∴∠BAF=∠EFC,∠AFB=∠FEC.
∴△AFB∽△FEC.
(2)设CE=3k,则CF=4k,由勾股定理得EF=DE=5k,
∴DC=AB=8k,
∵∠AFB+∠BAF=90°,∠AFB+∠EFC=90°,
∴∠BAF=∠EFC,
∴tan∠BAF=tan∠EFC=
∴BF=6k,AF=BC=AD=10k,
在Rt△AFE中由勾股定理得AE==5
解得:k=1,
故矩形ABCD的周长=2(AB+BC)=2(8k+10k)=36cm.
(1)矩形的特点是四个角均为直角,折叠的部分所包含的角也是直角,利用在直角三角形中两锐角互余可得∠BAF=∠CFE,进而可证明△ABF∽△FCE;
(2)利用相似三角形对应边成比例,再利用勾股定理即可得解.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网