题目内容
如图,PAB,PCD是⊙O的两条割线,AB是⊙O的直径,AC∥OD.(1)求证:CD=______;(先填后证)
(2)若
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131211110857738238968/SYS201312111108577382389013_ST/0.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131211110857738238968/SYS201312111108577382389013_ST/1.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131211110857738238968/SYS201312111108577382389013_ST/images2.png)
【答案】分析:(1)由于AC∥OD,OA=OD,故∠1=∠2,∠2=∠3.即∠1=∠3,则
=
,CD=BD;
(2)由于AC∥OD,故
=
,由于
=
,CD=BD,故
=
,因为AB=2AO,所以
=
,又因为AB是⊙O的直径,所以∠ADB=90°,AD2+BD2=AB2,由
=
,设AB=5k,BD=3k,AD=4k,代入代数式即可求解.
解答:
解:(1)求证:CD=BD,
证明:∵AC∥OD,
∴∠1=∠2.
∵OA=OD,
∴∠2=∠3.
∴∠1=∠3.
∴
=
.
∴CD=BD.
(2)∵AC∥OD,
∴
=
.
∵
=
,CD=BD,
∴
=
.
∵AB=2AO,
∴
=
.
∵AB是⊙O的直径,
∴∠ADB=90°.
∴AD2+BD2=AB2
∵
=
,设AB=5k,BD=3k,
∴AD=4k.
∴
=
.
点评:本题考查的是平行线的性质及圆周角定理,等腰三角形的,比较复杂,是一道具有综合性的题目.
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131211110857738238968/SYS201312111108577382389013_DA/0.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131211110857738238968/SYS201312111108577382389013_DA/1.png)
(2)由于AC∥OD,故
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131211110857738238968/SYS201312111108577382389013_DA/2.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131211110857738238968/SYS201312111108577382389013_DA/3.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131211110857738238968/SYS201312111108577382389013_DA/4.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131211110857738238968/SYS201312111108577382389013_DA/5.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131211110857738238968/SYS201312111108577382389013_DA/6.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131211110857738238968/SYS201312111108577382389013_DA/7.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131211110857738238968/SYS201312111108577382389013_DA/8.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131211110857738238968/SYS201312111108577382389013_DA/9.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131211110857738238968/SYS201312111108577382389013_DA/10.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131211110857738238968/SYS201312111108577382389013_DA/11.png)
解答:
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131211110857738238968/SYS201312111108577382389013_DA/images12.png)
证明:∵AC∥OD,
∴∠1=∠2.
∵OA=OD,
∴∠2=∠3.
∴∠1=∠3.
∴
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131211110857738238968/SYS201312111108577382389013_DA/12.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131211110857738238968/SYS201312111108577382389013_DA/13.png)
∴CD=BD.
(2)∵AC∥OD,
∴
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131211110857738238968/SYS201312111108577382389013_DA/14.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131211110857738238968/SYS201312111108577382389013_DA/15.png)
∵
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131211110857738238968/SYS201312111108577382389013_DA/16.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131211110857738238968/SYS201312111108577382389013_DA/17.png)
∴
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131211110857738238968/SYS201312111108577382389013_DA/18.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131211110857738238968/SYS201312111108577382389013_DA/19.png)
∵AB=2AO,
∴
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131211110857738238968/SYS201312111108577382389013_DA/20.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131211110857738238968/SYS201312111108577382389013_DA/21.png)
∵AB是⊙O的直径,
∴∠ADB=90°.
∴AD2+BD2=AB2
∵
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131211110857738238968/SYS201312111108577382389013_DA/22.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131211110857738238968/SYS201312111108577382389013_DA/23.png)
∴AD=4k.
∴
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131211110857738238968/SYS201312111108577382389013_DA/24.png)
![](http://thumb.zyjl.cn/pic6/res/czsx/web/STSource/20131211110857738238968/SYS201312111108577382389013_DA/25.png)
点评:本题考查的是平行线的性质及圆周角定理,等腰三角形的,比较复杂,是一道具有综合性的题目.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目
![精英家教网](http://thumb.zyjl.cn/pic3/upload/images/201202/3/d0a4299c.png)
A、6 | ||
B、2 | ||
C、
| ||
D、
|