题目内容
【题目】下列关于函数的四个命题:①当时,有最小值10;②为任何实数,时的函数值大于时的函数值;③若,且是整数,当时,的整数值有个;④若函数图象过点和,则.其中真命题的序号是( )
A.① B.② C.③ D.④
【答案】C.
【解析】
试题分析:①错,理由:当x=时,y取得最小值;②错,理由:因为=3, 即横坐标分别为x=3+n , x=3n的两点的纵坐标相等,即它们的函数值相等;③对,理由:若n>3,则当x=n时,y=n2 6n+10>1,当x=n+1时,y=(n+1)2 6(n+1)+10=n24n+5,则n24n+5-(n2 6n+10)=2n-5,因为当n为整数时,n2 6n+10也是整数,2n-5也是整数,n24n+5也是整数,故y有2n-5+1=2n-4个整数值;④错,理由:当x<3时,y随x的增大而减小,所以当a<3,b<3时,因为y0<y0+1,所以a>b,故错误;故选C.
练习册系列答案
相关题目