题目内容
【题目】阅读下面材料,完成(1)﹣(3)题
数学课上,老师出示了这样一道题:如图,四边形ABCD,AD∥BC,AB=AD,E为对角线AC上一点,∠BEC=∠BAD=2∠DEC,探究AB与BC的数量关系.
某学习小组的同学经过思考,交流了自己的想法:
小柏:“通过观察和度量,发现∠ACB=∠ABE”;
小源:“通过观察和度量,AE和BE存在一定的数量关系”;
小亮:“通过构造三角形全等,再经过进一步推理,就可以得到线段AB与BC的数量关系”.
……
老师:“保留原题条件,如图2, AC上存在点F,使DF=CF=AE,连接DF并延长交BC于点G,求的值”.
(1)求证:∠ACB=∠ABE;
(2)探究线段AB与BC的数量关系,并证明;
(3)若DF=CF=AE,求的值(用含k的代数式表示).
【答案】(1)见解析;(2)CB=2AB;(3)
【解析】
(1)利用平行线的性质以及角的等量代换求证即可;
(2)在BE边上取点H,使BH=AE,可证明△ABH≌△DAE,△ABE∽△ACB,利用相似三角形的性质从而得出结论;
(3)连接BD交AC于点Q,过点A作AK⊥BD于点K,得出,通过证明△ADK∽△DBC得出∠BDC=∠AKD=90°,再证DF=FQ,设AD=a,因此有DF=FC=QF=ka,再利用相似三角形的性质得出AC=3ka,,,从而得出答案.
解:(1)∵∠BAD=∠BEC
∠BAD=∠BAE+∠EAD
∠BEC=∠ABE+BAE
∴∠EAD=∠ABE
∵AD∥BC
∴∠EAD=∠ACB
∴∠ACB=∠ABE
(2)在BE边上取点H,使BH=AE
∵AB=AD
∴△ABH≌△DAE
∴∠AHB=∠AED
∵∠AHB+∠AHE=180°
∠AED+∠DEC=180°
∴∠AHE=∠DEC
∵∠BEC=2∠DEC
∠BEC=∠HAE+∠AHE
∴∠AHE=∠HAE
∴AE=EH
∴BE=2AE
∵∠ABE=∠ACB
∠BAE=∠CAB
∴△ABE∽△ACB
∴
∴CB=2AB;
(3)连接BD交AC于点Q,过点A作AK⊥BD于点K
∵AD=AB
∴
∠AKD=90°
∵
∴
∵AD∥BC
∴∠ADK=∠DBC
∴△ADK∽△DBC
∴∠BDC=∠AKD=90°
∵DF=FC
∴∠FDC=∠DFC
∵∠BDC=90°
∴∠FDC+∠QDF=90°
∠DQF+∠DCF=90°
∴DF=FQ
设AD=a
∴DF=FC=QF=ka
∵AD∥BC
∴∠DAQ=∠QCB
∠ADQ=∠QBC
∴△AQD∽△CQB
∴
∴AQ=ka=QF=CF
∴AC=3ka
∵△ABE∽△ACB
∴
∴
同理△AFD∽△CFG
∴
.