题目内容
【题目】如图(1),在ABC中,,BC=9cm, AC=12cm, AB=15cm.现有一动点P,从点A出发,沿着三角形的边ACCBBA运动,回到点A停止,速度为3cm/s,设运动时间为t s.
(1)如图(1),当t=______时,△APC的面积等于△ABC面积的一半;
(2)如图(2),在△DEF中,,DE=4cm, DF=5cm, . 在△ABC的边上,若另外有一个动点Q,与点P同时从点A出发,沿着ABBCCA运动,回到点A停止.在两点运动过程中的某一时刻,恰好,求点Q的运动速度.
【答案】(1)t=或;(2)
【解析】
(1)先求出△ABC面积,进而可求出△APC的面积,分P点运动到BC边上时和P点运动到AB边上时两种情况分别讨论即可;
(2)由全等三角形的性质得出,进而可求出P的运动时间,即Q的运动时间,再利用速度=路程÷时间求解即可.
(1)
∵△APC的面积等于△ABC面积的一半
当P点运动到BC边上时,此时
即
此时
当P点运动到AB边上时,作PQ⊥AC于Q
此时
即
∴此时P点在AB边的中点
此时
综上所述,当t=或时,△APC的面积等于△ABC面积的一半
(2)∵,DE=4cm, DF=5cm,
此时P点运动的时间为
∵P,Q同时出发,所以Q运动的时间也是
∴Q运动的速度为
【题目】数学课上,李老师出示了如下框中的题目.
在等边三角形ABC中,点E在AB上,点D在CB的延长线上,且ED=EC,如图.试确定线段AE与DB的大小关系,并说明理由. |
小敏与同桌小聪讨论后,进行了如下解答:
(1)特殊情况,探索结论
当点E为AB的中点时,如图1,确定线段AE与的DB大小关系.请你直接写出结论:
AE DB(填“>”,“<”或“=”).
图1 图2
(2)特例启发,解答题目
解:题目中,AE与DB的大小关系是:AE DB(填“>”,“<”或“=”).
理由如下:如图2,过点E作EF∥BC,交AC于点F.
(请你完成以下解答过程)
(3)拓展结论,设计新题
在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC.若△ABC的边长为1,AE=2,求CD的长(请你直接写出结果).