题目内容
【题目】如图,有长为 24m 的篱笆,现一面利用墙(墙的最大可用长度 a 为 10m)围成中间隔有一道篱笆的长方形花圃,设花圃的宽 AB 为 xm,面积为 Sm2.
(1) 求 S 与 x 的函数关系式及 x 值的取值范围;
(2) 要围成面积为 45m2 的花圃,AB 的长是多少米?
(3) 当 AB 的长是多少米时,围成的花圃的面积最大?
【答案】(1)S=﹣3x2+24x,≤x< 8;(2) 5m;(3)46.67m2
【解析】
(1)根据AB为xm,BC就为(24-3x),利用长方体的面积公式,可求出关系式;
(2)将S=45代入(1)中关系式,可求出x即AB的长;
(3)当墙的宽度为最大时,有最大面积的花圃.此故可求.
(1)根据题意,得S=x(24﹣3x),
即所求的函数解析式为:S=﹣3x2+24x,
又∵0<24﹣3x≤10,
∴≤x< 8;
(2)根据题意,设AB长为x,则BC长为24﹣3x,
∴﹣3x2+24x=45,
整理,得x2﹣8x+15=0,
解得x=3或5,
当x=3时,BC=24﹣9=15>10不成立,
当x=5时,BC=24﹣15=9<10成立,
∴AB长为5m;
(3)S=24x﹣3x2=﹣3(x﹣4)2+48,
∵墙的最大可用长度为10m,0≤BC=24﹣3x≤10,
∴≤x< 8,
∵对称轴x=4,开口向下,
∴当x=m,有最大面积的花圃,
即:x=m,
最大面积为:=24×﹣3×()2=46.67m2
练习册系列答案
相关题目