题目内容
【题目】如图,点C为线段AB上一点,△ACM,△CBN是等边三角形,直线AN,MC交于点E,直线BM、CN交与F点。
(1)求证:AN=BM;
(2)求证:△CEF为等边三角形;
(3)将△ACM绕点C按逆时针方向旋转900,其他条件不变,在图2中补出符合要求的图形,并判断第(1)(2)两小题的结论是否仍然成立,不要求证明。
【答案】(1)证明见解析;(2)证明见解析;(3)成立.
【解析】
试题(1)可通过全等三角形来得出简单的线段相等,证明AN=BM,只要求出三角形ACN和MCB全等即可,这两个三角形中,已知的条件有AC=MC,NC=CB,只要证明这两组对应边的夹角相等即可,我们发现∠ACN和∠MCB都是等边三角形的外角,因此它们都是120°,这样就能得出两三角形全等了.也就证出了AN=BM.
(2)我们不难发现∠ECF=180﹣60﹣60=60°,因此只要我们再证得两条边相等即可得出三角形ECF是等边三角形,可从EC,CF入手,由(1)的全等三角形我们知道,∠MAC=∠BMC,又知道了AC=MC,∠MCF=∠ACE=60°,那么此时三角形AEC≌三角形MCF,可得出CF=CE,于是我们再根据∠ECF=60°,便可得出三角形ECF是等边三角形的结论.
(3)判定结论1是否正确,也是通过证明三角形ACN和BCM来求得.这两个三角形中MC=AC,NC=BC,∠MCB和∠ACN都是60°+∠ACB,因此两三角形就全等,AN=BM,结论1正确.如图,当把MC逆时针旋转90°后,AC也旋转了90°,因此∠ACB=90°,很显然∠FCE>90°,因此三角形FCE绝对不可能是等边三角形.
试题解析:(1)∵△ACM,△CBN是等边三角形,
∴AC=MC,BC=NC,∠ACM=60°,∠NCB=60°,
在△CAN和△MCB中,,∴△CAN≌△MCB(SAS),
∴AN=BM.
(2)∵△CAN≌△MCB,
∴∠CAN=∠CMB,
又∵∠MCF=180°﹣∠ACM﹣∠NCB=180°﹣60°﹣60°=60°,
∴∠MCF=∠ACE,
在△CAE和△CMF中,,
∴△CAE≌△CMF(ASA),
∴CE=CF,
∴△CEF为等腰三角形,
又∵∠ECF=60°,
∴△CEF为等边三角形.
(3)连接AN,BM,∵△ACM、△CBN是等边三角形,∴AC=MC,BC=CN,∠ACM=∠BCN=60°,∵∠ACB=90°,∴∠ACN=∠MCB,
在△ACN和△MCB中,,∴△ACN≌△MCB(SAS),
∴AN=MB.
当把MC逆时针旋转90°后,AC也旋转了90°,因此∠ACB=90°,很显然∠FCE>90°,因此三角形FCE绝对不可能是等边三角形,
即结论1成立,结论2不成立.