题目内容
【题目】如图,在8×5的正方形网格中,每个小正方形的边长均为1,△ABC的三个顶点均在小正方形的顶点上.
(1)在图1中画出△ABD(点D在小正方形的顶点上),使△ABD的周长等于△ABC的周长,且四边形ACBD是中心对称图形;
(2)在图2中找一点E(点E在小正方形的顶点上),使tan∠AEB=2(AE<EB),且四边形ACEB的对边不平行,并直接写出图2中四边形ACEB的面积.
【答案】(1)见解析;(2)画图见解析,8.5
【解析】
(1)根据中心对称图形的特点画图即可;
(2)根据等腰直角三角形的性质,全等三角形及相似三角形的性质即可画出图形,利用面积相加的关系列式求出四边形ACEB的面积.
解:(1)如图,△ABD即为所求.
(2)如图,四边形ABEC即为所求.
四边形ACEB的面积=××+×4×3=8.5.
练习册系列答案
相关题目
【题目】深圳天虹某商场从厂家批发电视机进行零售,批发价格与零售价格如下表:
电视机型号 | 甲 | 乙 |
批发价(元/台) | 1500 | 2500 |
零售价(元/台) | 2025 | 3640 |
若商场购进甲、乙两种型号的电视机共50台,用去9万元.
(1)求商场购进甲、乙型号的电视机各多少台?
(2)迎“元旦”商场决定进行优惠促销:以零售价的七五折销售乙种型号电视机,两种电视机销售完毕,商场共获利8.5%,求甲种型号电视机打几折销售?