题目内容
【题目】如图,P为⊙O外一点,PA切⊙O于点A,过点P的任一直线交⊙O于B、C,连结AB、AC,连PO交⊙O于D、E.
(1)求证:∠PAB=∠C.
(2)如果PA2=PD·PE,那么当PA=2,PD=1时,求⊙O的半径.
【答案】(1)证明见解析(2)
【解析】试题分析:(1)过A点作直径AF,连接BF,求得∠ABF=90°,即∠F+∠BAF=90°,PA切⊙O于点A.得出∠PAF=90°,即∠PAB+∠BAF=90°,从而求得∠PAB=∠F,根据同弧所对的圆周角相等得出∠F=∠C,进而求得∠PAB=∠C;
(2)由PA2=PDPE求得PE=4,因为DE=PE-PD,即可求得圆的直径,从而求得圆的半径.
试题解析:
(1)证明:过A点作直径AF,连接BF,
∴∠ABF=90°,
∴∠F+∠BAF=90°,
∵PA切⊙O于点A.
∴∠PAF=90°,
∴∠PAB+∠BAF=90°
∴∠PAB=∠F,
∵∠F=∠C,
∴∠PAB=∠C;
(2)解:∴PA2=PDPE,
∵PA=2,PD=1,
∴PE=4,
∴DE=PE-PD=4-1=3,
∴OD=OE=,
∴⊙O的半径为;