题目内容

如图,△ABC中,∠C=90,AB=10cm,AC=8cm,点P从点A开始出发向点C以2cm/s的速度移动,点Q从B点出发向点C以1cm/s的速度移动,若P、Q分别同时从A,B出发,(  )秒后四边形APQB是△ABC面积的
2
3
A.2B.4.5C.8D.7

∵△ABC中,∠C=90°,
∴△ABC是直角三角形,
由勾股定理,得BC=
102-82
=6.
设t秒后四边形APQB是△ABC面积的
2
3

则t秒后,CQ=BC-BQ=6-t,PC=AC-AP=8-2t.
根据题意,知S△PCQ=
1
3
S△ABC
1
2
CQ×PC=
1
3
×
1
2
AC×BC,
1
2
(6-t)(8-2t)=
1
3
×
1
2
×8×6,
解得t=2或t=8(舍去).
故选A.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网