题目内容

精英家教网如图,在直角坐标系中,点M(x,0)可在x轴上运动,且它到点P(5,5),Q(2,1)的距离分别为MP和MQ,当MP+MQ的值最小时,求点M的坐标.
分析:作P点关于x 的对称点P′,根据轴对称的性质,PM=P′M,MP+MQ的最小值可转化为QP′的最小值,再求出P′Q所在的直线的解析式,即可求出直线与x轴的交点.
解答:精英家教网解:作P点关于x 的对称点P′,
∵P点的坐标为(5,5),
∴P′(5,-5)PM=P′M,
连接P′Q,则P′Q与x轴的交点应为满足QM+PM的值最小,
即为M点.
设P′Q所在的直线的解析式为:y=kx+b,
于是有方程组
1=2k+b
-5=5k+b

解得:
k=-2
b=5

∴y=-2x+5,
当y=0时,x=
5
2

∴M(
5
2
,0)
点评:本题考查了轴对称---最短路径问题和待定系数法求一次函数解析式,明确轴对称的定义,会将最小值问题转化为轴对称的问题是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网