题目内容

【题目】某商场销售一批名牌衬衫,平均每天可售出10件,每件盈利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出1件,若商场平均每天要盈利600元,每件衬衫应降价多少元?

【答案】平均每天要盈利600元,每件衬衫应降价20元

【解析】

试题分析:本题考查一元二次方程解决商品销售问题,设每件衬衫应降价x,则每件的盈利为(40-x),每天可以售出的数量为(10+x),由题意得: (40-x)(10+x)=600,解得=10,=20,由于为了扩大销售量,增加盈利,尽快减少库存,所以=20.

试题解析:(1)设每件衬衫应降价x元,则每件盈利40-x元,每天可以售出10+x,

由题意,得(40-x)(10+x)=600,

即:(x-10)(x-20)=0,

解,得x1=10,x2=20,

为了扩大销售量,增加盈利,尽快减少库存,所以x的值应为20,

所以,若商场平均每天要盈利600元,每件衬衫应降价20元.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网