题目内容
【题目】如图1,在△ABC中,∠BAC=90°,AB=AC,D为边AB上一点,连接CD,在线段CD上取一点E,以AE为直角边作等腰直角△AEF,使∠EAF=90°,连接BF交CD的延长线于点P.
(1)探索:CE与BF有何数量关系和位置关系?并说明理由;
(2)如图2,若AB=2,AE=1,把△AEF绕点A顺时针旋转至△AE'F′,当∠E′AC=60°时,求BF′的长.
【答案】(1)CE=BF,CE⊥BF,理由见解析;(2)
【解析】
(1)由“SAS”可证△AEC≌△AFB,可得CE=BF,∠ABF=∠ACE,进而可得CE⊥BF;
(2)过点E'作E'H⊥AC,连接E'C,由直角三角形的性质和勾股定理可求E'C的长,由“SAS”可证△F'AB≌△E'AC,可得BF'=CE'=.
(1)CE=BF,CE⊥BF,理由如下:
∵∠BAC=∠EAF=90°,
∴∠EAC=∠FAB,
又∵AE=AF,AB=AC,
∴△AEC≌△AFB(SAS)
∴CE=BF,∠ABF=∠ACE,
∵∠ADC=∠BDP,
∴∠BPD=∠CAD=90°,
∴CE⊥BF;
(2)过点E'作E'H⊥AC,连接E'C,
∵把△AEF绕点A顺时针旋转至△AE'F′,
∴AF=AE=AE'=AF'=1,∠BAF'=∠E'AC=60°,
∵∠E'AC=60°,∠AHE'=90°,
∴∠AE'H=30°,
∴AH=AE'=,E'H=AH=,
∴HC=AC﹣AH=,
∴E'C==,
∵AF'=AE',∠F'AB=∠E'AC=60°,AB=AC,
∴△F'AB≌△E'AC(SAS)
∴BF'=CE'=.
【题目】某商店购进了一种新款小电器,为了寻找合适的销售价格,进行了为期5周的试营销,试营销的情况如表所示:
第1周 | 第2周 | 第3周 | 第4周 | 第5周 | |
售价/(元/台) | 50 | 40 | 60 | 55 | 45 |
销售/台 | 360 | 420 | 300 | 330 | 390 |
已知该款小电器的进价每台30元,设该款小电器每台的售价为x元,每周的销量为y台.
(1)观察表中的数据,推断y与x满足什么函数关系,并求出这个函数关系式;
(2)若想每周的利润为9000元,则其售价应定为多少元?
(3)若每台小电器的售价不低于40元,但又不能高于进价的2倍,则如何定价才能更快地减少库存?此时每周最多可销售多少台?