题目内容

如图,抛物线的对称轴是直线x=2,顶点A的纵坐标为1,点B(4,0)在此抛物线上.

(1)求此抛物线的解析式;
(2)若此抛物线对称轴与x轴交点为C,点D(x,y)为抛物线上一动点,过点D作直线y=2的垂线,垂足为E.
①用含y的代数式表示CD2,并猜想CD2与DE2之间的数量关系,请给出证明;
②在此抛物线上是否存在点D,使∠EDC=120°?如果存在,请直接写出D点坐标;如果不存在,请说明理由.
(1)依题意,设抛物线的解析式为:y=a(x-2)2+1,代入B(4,0),得:
a(4-2)2+1=0,解得:a=-
1
4

∴抛物线的解析式:y=-
1
4
(x-2)2+1.

(2)①猜想:CD2=DE2
证明:由D(x,y)、C(2,0)、E(x,2)知:
CD2=(x-2)2+y2,DE2=(y-2)2
由(1)知:(x-2)2=-4(y-1)=-4y+4,代入CD2中,得:
CD2=y2-4y+4=(y-2)2=DE2
②由于∠EDC=120°>90°,所以点D必在x轴上方,且抛物线对称轴左右两侧各有一个,以左侧为例:
延长ED交x轴于F,则EF⊥x轴;
在Rt△CDF中,∠FDC=180°-120°=60°,∠DCF=30°,则:
CD=2DF、CF=
3
DF;
设DF=m,则:CF=
3
m、CD=DE=2m;
∵EF=ED+DF=2m+m=2,
∴m=
2
3
,DF=m=
2
3
,CF=
3
m=
2
3
3
,OF=OC-CF=2-
2
3
3

∴D(2-
2
3
3
2
3
);
同理,抛物线对称轴右侧有:D(2+
2
3
3
2
3
);
综上,存在符合条件的D点,且坐标为(2-
2
3
3
2
3
)或(2+
2
3
3
2
3
).
练习册系列答案
相关题目
唐朝诗人李欣的诗《古从军行》开头两句说:“白日登山望峰火,黄昏饮马傍交河.”诗中隐含着一个有趣的数学问题--将军饮马问题:
如图1所示,诗中将军在观望烽火之后从山脚下的A点出发,走到河旁边的P点饮马后再到B点宿营.请问怎样走才能使总的路程最短?
做法如下:如图1,从B出发向河岸引垂线,垂足为D,在AD的延长线上,取B关于河岸的对称点B′,连接AB′,与河岸线相交于P,则P点就是饮马的地方,将军只要从A出发,沿直线走到P,饮马之后,再由P沿直线走到B,所走的路程就是最短的.
(1)观察发现
再如图2,在等腰梯形ABCD中,AB=CD=AD=2,∠D=120°,点E、F是底边AD与BC的中点,连接EF,在线段EF上找一点P,使BP+AP最短.
作点B关于EF的对称点,恰好与点C重合,连接AC交EF于一点,则这点就是所求的点P,故BP+AP的最小值为______.
(2)实践运用
如图3,已知⊙O的直径MN=1,点A在圆上,且∠AMN的度数为30°,点B是弧AN的中点,点P在直径MN上运动,求BP+AP的最小值.
(3)拓展迁移
如图4,已知抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,且抛物线经过A(-1,0)、C(0,-3)两点,与x轴交于另一点B.
①求这条抛物线所对应的函数关系式;
②在抛物线的对称轴直线x=1上找到一点M,使△ACM周长最小,请求出此时点M的坐标与△ACM周长最小值.(结果保留根号)

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网