题目内容
【题目】如图,已知点A、B、C、D、E在同一直线上,且AC=BD,E是线段BC的中点.
(1)点E是线段AD的中点吗?说明理由;
(2)当AD=10,AB=3时,求线段BE的长度.
【答案】(1)点E是线段AD的中点,理由见解析;(2)线段BE的长度为2.
【解析】
(1)由于AC=BD,两线段同时减去BC得:AB=CD,而点E是BC中点,BE=EC,AB+BE=CD+EC,所以E是线段AD的中点.
(2)点E是线段AD的中点,AD已知,所以可以求出AE的长度,而AB的长度已知,BE=AE-AB,所以可以求出BE的长度.
(1)点E是线段AD的中点,
∵AC=BD,
∴AB+BC=BC+CD,
∴AB=CD. ∵E是线段BC的中点,
∴BE=EC,
∴AB+BE=CD+EC,即AE=ED,
∴点E是线段AD的中点;
(2)∵AD=10,AB=3,
∴BC=AD-2AB=10-2×3=4,
∴BE=BC=×4=2,
即线段BE的长度为2.
练习册系列答案
相关题目